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1 The Geometry of Univariate Probability Distributions

Felix Klein taught us that transformation groups generate geometry and Elie Cartan taught us how
to uncover that geometry through differential invariants. In 2008 we began to study the geometry
of univariate probability distributions determined by the action of A, the affine group on the line.
The Cartan equivalence problem to be solved is the simplest example we know of the general case
which Cartan developed for his classification of infinite Lie pseudogroups. The transformation group A
must leave invariant a function f . When that function is the cumulative probability distribution, the
exceptional constant curvature cases that we discover are the Extreme Value Theory Attractors.When
the function is the Characteristic Function they are the Lévy Stable distributions and in particular in
the symmetric case these are the Normal and Cauchy distributions.When the function is the Omega
function of a distribution the result is a remarkable family of distributions that we describe here.1 All
of this geometry (with the exception of the explicit description of this new family of distributions) was
presented as a short graduate course at Impa in June and July 2023, which we refer to as C-S 2023
where references are required in what follows.2

2 What’s EVT?

Extreme Value Theory (EVT) is a remarkable collection of results in probability and statistics that deal
with data in the ‘tails’ of probability distributions.3 EVT is what you need to know if you want to make
predictions about higher than ‘expected’ rainfall or temperatures, or the probability of a 20% drop in
the US equity market by the end of the year, or how many hospital beds you need to cover admissions
when a viral epidemic strikes.The subject of EVT began to be explored about a century ago. Today it
has grown to a large collection of sophisticated theorems in probability and statistical techniques for
applying the theory to data. Extracting information about what has not yet been observed from what
has already been is the aim of statistics in general. But EVT is the specialist tool for ‘seeing around a
corner’ or ‘looking into the future’. There are many applications (for example in insurance, quality
control and finance) in which its practitioners attempt to do just that.

In principle, EVT should have provided advance warning of the dramatic rise in market risk in
the run up to September 2008. It might also have been expected to give accurate estimates of the
growth in Covid-19 hospital admissions in 2020. But in fact, it did neither. Because it couldn’t. The
amount of data required to implement EVT statistics with existing technology made these applications
completely impossible. Until now.

1Following Kronecker, one might say that the exceptional distributions were invented by God and that the rest are
the work of man.

2Ana Cascon and William F. Shadwick, A short course on the geometry of probability distributions 2023,
https://www.youtube.com/playlist?list=PLo4jXE-LdDTTOvPRBuSUcCJHyZOzpsVDn

3The subject began in 1928 with a discovery by Fisher and Tippett about the distributions of ‘extremes’– the maxima
of independent, identically distributed samples of random data as the sample size tends to infinity.They answered the
question of what limiting distributions were possible for extremes. They found that if a limit existed, it could only be
one of three ‘types’ which are now known as the Weibull, Gumbel and Fréchet distributions–the EVT attractors. Before
long Richard von Mises showed that the three types were really a 1 parameter family of distributions with negative, zero
and positive parameter values tracing out Fisher and Tippett’s discoveries.In 1943 Gnedenko independently discovered
the three types and showed that whether or not the extremes of a distribution F had one of the three possible limits
depended only on the behaviour of F as it approached the upper limit of its support. The next major advance came
with the work of Balkema and de Haan and, independently, Picklands in the mid 1970s with what became the statistical
mainstay of the subject, Generalised Pareto distributions. This simple family of distributions had the same limits as the
Extreme Value distributions and came with a natural way to ‘attach’ them as tails to empirical distributions of data.
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3 No Longer Impossible

Accurate predictions from small data samples are not impossible any more. We have discovered a
totally new approach to the problem of ‘fitting’ an Extreme Value distribution to data. It’s completely
algorithmic so it’s ideally suited to automation, and the algorithm is something that even an AI can be
given the ability to implement.

We’ve already shown (see OmegaAnalysis.com for examples from Covid-19 and from financial
markets) that real world data from all sorts of sources has ‘tails’ that are very well predicted by the
distributions we’ve discovered.4 This appeared quite remarkable to us at first but the more of it we’ve
seen the less surprising it seems. The phenomena we observe come from ‘nature’. They are governed
by processes that, however far from understandable through mathematical models they may be, are
unlikely to be the result of some random series of Cosmic random number machines. Through the use
of AI we should now be able to search out and test the predictive power in previously infeasible cases.

4 From Data Samples to Out of Sample Predictions

Our algorithm uses a tail measure that applies to any probability distribution that’s bounded below
and has a finite average. This function is invariant under changes of location and scale and is a natural
measure of how fat the tail is. Its value is a real number ↵ > 1 and the smaller the value of ↵ the fatter
the tail.

Because any data sample can be thought of as an empirical distribution we can use this function to
assign a ‘tail parameter’ to the data. The family of distributions we’ve discovered is parametrised by ↵
so once this number has been calculated we just have to match it to the unique distribution in our
family with the same ↵.Then we can start making predictions beyond or even far beyond any of the
observations in our data set.

5 The Tail Measure

Suppose that F is a distribution with mean µ defined on the interval [A,B] where |A| < 1. Let
! =

R µ
A F (x)dx.It is easy to verify that 2! = EF (|x� µ|), so ! is a natural measure of spread around

the mean:the larger ! the fatter the tail.5 Our tail measure is defined by

↵(F ) =
µ�A

!
. (1)

It is obvious that ↵ is an affine invariant, that ↵ > 1 and that the larger the value of ↵, the lower the
probability of finding the random variable with distribution F far above the mean.

6 Exceptional Omega Functions and the CSS Distributions

For the 2008 Robby Gardner memorial workshop at MSRI, we solved the equivalence problem for
Omega functions6 under A, the affine group on the line. For an Omega function ⌦ on [0,1) and any
point x0 2 [0,1) let ⌦x0 = 1

⌦(x0)
⌦. The Omega functions ⌦F (x) = x�(and their mirror images on

the left half line) are the exceptional cases for which [⌦x0 ] = [⌦] for all x0 2 [0,1), where [⌦] is the
equivalence class of ⌦ under A.

The CSS distributions7 on the right half line are the distributions CSS(�) obtained by inverting
the family of Omega functions ⌦F (x) = x�. They all have mean 1 and ! = ��1, so the family is
parametrised by the tail measure ↵.

↵(CSS(x,�)) = �. (2)
The distributions are given by the following formula8

CSS(x,�) =
x2� � (�+ 1)x� + �x��1

(x� � 1)2
. (3)

4In technical terms, that means that the data behave as though they come from a distribution in the domain of
attraction of a Fréchet distribution F (x,↵) with ↵ > 1.

5See C-S Lecture 2 for the alternative Markov Inequality that demonstrates this fact.
6See C-S 2023 Lecture 2. For any univariate distribution with finite first moment its Omega function is an alternative

description to the cumulative or Characteristic function which has many useful properties.
7Together with B. A. Shadwick, we first discovered these previously unknown distributions in 2003 by solveing the

inverse problem for Omega Functions. It was only after we solved the equivalence problem that we recognised their
geometric significance.

8The apparent singularity at x = 1 is removeable.

2



7 Predicting the (formerly) Unpredictable

It is easy to check, either by using our theorems about the geometry of Extreme Value Distributions or
by applying Gnedenko’s limit tests (see C-S 2023), that CSS(x,�) is in the domain of attraction of
the Fréchet distribution F (x,�). Therefore we have a canonical method of fitting a natural tail model
to any data set with at least two distinct points. You only need to calculate the value of ↵ for the
empirical distribution given by the data sample S

↵(S) =
µS � Smin

!S
(4)

and the unique affine transformation that maps Smin to 0 and µS to 1. This gives a consistent, canonical
method for fitting the data by a standard CSS distribution. The results of calculations made with
that distribution (such as average excess on a given value) can then be mapped back to the data space
by the inverse affine transformation, extending that data set beyond the observations it contains.9

This is reproducible by anyone with the same data–because it’s completely canonical. There are no
choices, and there is no ambiguity. Unlike the case of standard EVT methods, our approach, which
makes its fits using all the data, provides transparent reproducible results. These have proved reliable
even with very small data samples. What is more, our approach, now available to everyone, is very
well suited to in-sample testing of its reliability and to automation.

8 Infinite in All Directions

Would you like to know if the current solar cycle is producing abnormally low numbers of sunspots?
How do do the observed numbers of tropical storms compare with what you would have expected if
you’d had this technology in 1901? Do the gaps between consecutive prime numbers agree with the
statistical predictions you’d have made by fitting the distribution of gaps for the primes with up to a
million digits? After all the primes with up to five million digits?

We’ve already tested our new approach on these questions and many more.
What happens when you start with a simple collection of numbers and use this method to generate

a dynamical system that moves points around? What new kinds of video games can you make using
those dynamics? How far from ‘normal’ do the responses to a post on X have to be to provide evidence
that an account is being ‘throttled’?

And the next time there’s a viral epidemic, maybe you’d like to make some accurate predictions
about health care demands to replace the disastrously wrong ones the specialists provide.

If you have an AI you think is trustworthy, you can ask it to come up with as many more examples
as you like–even if it doesn’t know where the phrase ‘Infinite in all directions’ comes from.

9As used to be well known, there’s no entirely free lunch. We have to assume that the data comes from a distribution
with a finite first moment. So if the underlying process were driven by a Cauchy distribution for example, our fits would
systematically underestimate the fatness of the tails. But the more data we had the closer the tail measure would be to
↵ = 1. It is instructive to check the rate of convergence to this ‘red line’ limiting value of ↵ with larger and larger data
sets generated by a Cauchy distribution or by a Fréchet distribution F (x,�) with �  1.
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