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In the paper linked to the announcement for this talk, we presented 
what should be seen as a method for navigating waves of Covid-19.  

Our focus is on making accurate (errors less than 10%) short to 
medium term (one week to several weeks) forecasts of Covid-19 
hospitalisations. 

The reason is simple:  

This is the fundamental requirement for dealing with an epidemic. 

Once we have accurate forecasts of demand, reliable contingency 
planning for healthcare is possible.
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SUMMARY
Six of 12 men wintering at an isolated Antarctic base sequentially developed

symptoms and signs of a common cold after 17 weeks of complete isolation.
Examination of specimens taken from the men in relation to the outbreak has not
revealed a causative agent.

INTRODUCTION
It has commonly been believed that on small Antarctic bases, isolated for many

months, upper respiratory infections die out during the first few weeks of isolation
and that the men are virtually symptom-free for the rest of the isolation period.
With the arrival of the relief ship cr aircraft, outbreaks of respiratory disease have
been noted to occur (Taylor, 1960; Siple, 1960; Hedblom, 1961; Cameron & Moore,
1968; Holmes, Allen, Bradburne & Stott, 1971). This has tended to follow the
pattern seen in other isolated communities (Paul & Freese, 1933; Shibli, Gooch,
Lewis & Tyrrell, 1971).

Several studies of upper respiratory disease in men at isolated Antarctic
stations have been undertaken. Sera obtained from the MeMurdo Sound wintering
party of 1958 were tested for the presence of antibodies to a number of respiratory
viruses, but not including rhinoviruses, and showed no evidence of infection with
any of the viral antigens tested (Chanock, R. M., quoted by Cameron & Moore,
1968). A systematic study of monthly serum specimens collected from the mem-
bers of the South African National Antarctic Expeditions in 1961—62 showed no
evidence of new virus infection (J. H. S. Gear, quoted by Cameron & Moore,
1968). In their 1968 study of the epidemiology of respiratory infections at Mawson,
an Australian Antarctic Research Expedition staticn, Cameron & Moore (1968)
made observations on infective diseases during the period of isolation, and found
no diagnostic rises in antibody titre against influenza viruses A and B, mumps,
adenovirus, herpes simplex and ornithosis. All attempts at virus isolation from
throat, nose and faeces swabs were unsuccessful.

The apparent absence of respiratory infections for long periods during isolation
in Antarctica has provided opportunity for basic epidemiological study, and
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Here is an indication of how little we know about the transmission of the 
most familiar illness caused by a corona virus—the common cold.
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The approach we have taken does not require models of infections, or of 
transmission, or cases or the proportion of cases that will require 
hospitalisation.  

Modelling those things correctly would, of course, give accurate predictions 
of hospitalisations (and a great deal more besides).  

But that is very difficult, as many of you know. 

Our much simpler goal can be met by a much easier approach.  

It is based simply on counting cumulative hospital admissions, and finding 
a simple curve that approximates those running totals very well.  

Here are 3 examples. The data are the blue dots and the curves are in red. 
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Cases in the 1853 Cholera epidemic in Aalborg, Denmark.
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Influenza Cases recorded in the Portuguese National Health 
Service 2017-2018.
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Covid-19 Hospitalisations in Ontario, 14 March-14 June 2021
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In each of these examples the red curve is the best fit to the cumulative 
data by a Gompertz Function: 

Gompertz functions and Gumbel Distributions

W.F.S

June 21, 2021

1 Michael Levitt’s Fits to Corona Virus Data

The Gompertz function, which Michael Levitt has shown provides good fits to total

cases and total deaths due to the corona virus, is just a scaled version of the Gumbel

distribution,

X(t) = Ne

�e�(at+b)
(1)

which is defined on (�1,1).

A is the asymptotic limit as x!1, and a > 0 and b are the statisticians’ location-

scale parameters. G doesn’t quite start at zero, nor does log(G(x + 1)/G(x)) have a

constant negative slope as Levitt’s shorthand description says, but those are close to

correct over the range that matters.

We created data pseudo-samples by taking the di↵erence between successive points

on a Gompertz function. These are, to a first order approximation, just points along the

(scaled up by A) Gumbel probability density function. Applying the same process that

we’ve used to fit new case data the result looks exactly like what we’re seeing with real

data.

Figure 1: GompertzLand cases and Predicted Average Excess

1

Time t is measured in days, starting at t=0. N is the (unknown) final number 
of events (deaths, cases, hospital admissions), a controls the rate at which 
the events grow and b determines the fraction of events at time t=0.

The three parameters can be estimated directly from event data, by non-
linear regression (which simply means finding the values of the parameters 
that minimise the average squared error between the points on the curve 
and the data).  

As the epidemic unfolds the parameters become progressively closer to 
their final values. 
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Decades before Newton showed why it was so, Galileo showed that 
projectiles followed parabolic trajectories, to a very good approximation.   

This is an example of what is now called a phenomenological model — one 
that provides a mathematical formulation that can be useful for prediction, 
even though it doesn’t explain the mechanism being modelled. 

The Gompertz Function is a simple phenomenological model for epidemics. 
It doesn’t explain why the growth follows these curves, but the observation 
that they do allows us to make forecasts. 

We find the parameters that make the best Gompertz Function fit today and 
we use that function’s values at future times as our forecast.  

The accuracy of those forecasts is a matter for empirical investigation.
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An error band of +/-10% shows how well successive weekly Gompertz Function 
fits predicted the future evolution of Danish Cholera cases.

0	

200	

400	

600	

800	

1000	

1200	

06-Aug	 20-Aug	 03-Sep	 17-Sep	 01-Oct	

Danish	Cholera	

Gompertz	FuncBon		26	Aug	

Gompertz	FuncBon	2	Sept	

Gompertz	FuncBon	9	Sept	

Gompertz	FuncBon	16	Sept	

Gompertz	FuncBon	23	Sept	

Gompertz	FuncBon	30	Sept	

Lower	10%	

Upper	10%	

mailto:cascon@OmegaAnalysis.com?subject=
mailto:shadwick@OmegaAnalysis.com?subject=


Analysis

Omega

11cascon@OmegaAnalysis.com shadwick@OmegaAnalysis.com

An error band of +/-10% shows how well successive weekly Gompertz 
Function fits predicted the future events.
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Errors in Ontario Covid-19 Hospitalisation Forecasts
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Galileo’s model also allowed him to make inferences about the motion of a 
projectile. (Which you may remember from a high school physics class.) 

The good fit between the cumulative event data for Covid-19 and the 
Gompertz function allows us to do the same thing. 

The fact that they follow a Gompertz Function as the epidemic progresses 
tells us that: 

The Gompertz Function dynamics are features of the time evolution of the 
epidemic. 
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Gompertz Function Dynamics

N —which is the final total events—governs the scale of the epidemic but its 
dynamics are driven by the Gumbel distribution.

Gompertz functions and Gumbel Distributions

W.F.S

June 21, 2021

1 Michael Levitt’s Fits to Corona Virus Data

The Gompertz function, which Michael Levitt has shown provides good fits to total

cases and total deaths due to the corona virus, is just a scaled version of the Gumbel

distribution,

X(t) = Ne

�e�(at+b)
(1)

which is defined on (�1,1).

A is the asymptotic limit as x!1, and a > 0 and b are the statisticians’ location-

scale parameters. G doesn’t quite start at zero, nor does log(G(x + 1)/G(x)) have a

constant negative slope as Levitt’s shorthand description says, but those are close to

correct over the range that matters.

We created data pseudo-samples by taking the di↵erence between successive points

on a Gompertz function. These are, to a first order approximation, just points along the

(scaled up by A) Gumbel probability density function. Applying the same process that

we’ve used to fit new case data the result looks exactly like what we’re seeing with real

data.

Figure 1: GompertzLand cases and Predicted Average Excess
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The Gompertz Function increases rapidly but its acceleration peaks at time
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Ẋ (14)
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 At this time only about 7% of the final events have occurred. 
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It reaches its maximum at 
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The velocity is very asymmetric, with a rapid rise and  much slower decline.
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At peak velocity, approximately 37% of N total events have occurred.
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This has immediate consequences for the Herd Immunity Threshold.

The Gompertz Function’s first derivative is a good approximation to daily 
increments. 
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Ẋ (16)
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Once we reach peak velocity the derivative starts decreasing—so the 
number of new events, which is just the daily increment, is smaller than it 
was the day before.

This means that the reproduction number must be less than 1. 
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We have illustrated the Gompertz Function fits to hospitalisations but they 
are equally good for Cases and Deaths. 

If cases are a good proxy for infections, then once the velocity peaks,the 
reproduction number Rt must be less than 1.  

In any epidemic that follows a Gompertz Function, the Herd Immunity 
Threshold is reached with about 37% of the susceptible population 
infected.

This is what we see in the Danish Cholera example. It continues to follow the 
Gompertz Function as cases (and Rt) decline rapidly to zero.

But that’s not what we saw in the initial Covid-19 outbreak. 

All of the outbreaks passed the peak velocity, and then…
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We saw a transition from Gompertz Function growth to linear growth in 
cumulative events. Here’s the transition for hospitalisations in London.

From Gompertz Function Growth to Linear Growth
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The linear approximation is extremely good with r2 >0.99 and very small 
errors between the data and the linear regression line.
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When the cumulative is growing (approximately) linearly, we must have the 
same number of new events added in each time period. 

If cases are a good proxy for infections: this means that  Rt =1. This is the 
condition for endemicity. 

We saw the transition to linearity repeated again and again in Covid-19 
data.

From Gompertz Function Growth to Linear Growth

Then we discovered that there is an example of a yearly cycle of transitions 
between Gompertz Function growth and linear growth: 

Endemic Influenza.
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The Portuguese National Health Service reports daily influenza case data 
starting in November 2016. 

This gave us the opportunity to observe the annual Influenza cycle over 
several years in detail.

The ‘Influenza Observatory’
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Influenza cases in Portugal Nov 2016 to May 2020.
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The annual peak outbreaks all follow Gompertz Function growth. 

They happen every year in the influenza cycle for the North Temperate 
Zone described by Edgar Hope-Simpson. 

Each is preceded and followed by linear growth.
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There’s also some ‘fine structure’ which again follows Hope-Simpson

The November entry ‘line’ has a higher slope than the April exit ‘line’. 
Following the summer off-season where the growth rate decreases, 
there’s a period of Gompertz Function growth in early autumn that 
accounts for this.
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If we zoom in, the autumn Gompertz Function growth is apparent.

This is repeated every year in the Portuguese data set.

57,000%

59,000%

61,000%

63,000%

65,000%

07
*M
ar*
20
17
%

07
*Ap
r*2
01
7%

07
*M
ay
*20
17
%

07
*Ju
n*2
01
7%

07
*Ju
l*2
01
7%

07
*Au
g*2
01
7%

07
*Se
p*2
01
7%

07
*O
ct*
20
17
%

Influenza%Cases%
Linear%
Piecwise%Linear%Decreasing%Growth%Rate%
Gompertz%Growth%Main%Outbreak%
Gompertz%Growth%IniMal%Outbreak%

mailto:cascon@OmegaAnalysis.com?subject=
mailto:shadwick@OmegaAnalysis.com?subject=


Analysis

Omega

24cascon@OmegaAnalysis.com shadwick@OmegaAnalysis.com

The annual Influenza Cycle in the Portugal

In [8], Gabriela Gomes et al show this with heterogeneity introduced through
individual variation in either susceptibility or exposure in an SEIR model of
deaths where the Herd Immunity Threshold is lowered substantially.

The cumulative simulated deaths for England reported in [8] are very well
approximated by Gompertz functions. This may simply reflect the fact that they
are constructed to be in reasonable agreement with the observed deaths data. It
is also possible that heterogeneity could be ‘calibrated’ by targeting Gompertz
Function growth in the outputs.

Table 1: Portuguese Influenza Cycle 2016-2021.

Portuguese Influenza Growth Cycle
Year Gompertz Function Growth Linear Growth

2016-2017 28 Nov 16-7 Mar 17 8 Mar 17-31 Aug 17

2017-2018 1 Sep 17-31 Oct 17 1 Nov 17-30 Nov 17
1 Dec-17-30 Apr 18 1 May 18-14 Sep 18

2018-2019 15 Sep 18-14 Nov 18 15 Nov 18-27 Dec 18
28 Dec 18-21 Mar 19 22 Mar 19-31 Aug 19

2019-2020 1 Sep 19-16 Nov 19 17 Nov 18-7 Dec 19
8 Dec 19-21 Mar 20 22 Mar 20-31 Aug 20

2020-2021 1 Sep 20-31 Oct 20 1 Nov 20-31 Dec 20
1 Jan 21-21 Mar 21

End of Table

7 Using the Extended Gompertz Function Model
in Future

7.1 Ongoing Covid-19 Outbreaks
While Covid-19 outbreaks continue we can expect that the alternating pattern
of Gompertz Function growth and linear growth will be maintained. Indeed, this
is what has been observed since the end of the 2020-2021 episodes.

In England, for example, by the middle of March 2021, the Gompertz Function
growth in hospitalisations had ended. Linear growth that began then continued
until the end of May.

Then another Gompertz Function growth period began, this one ‘out of
season’.This caused the Government to delay the planned ‘reopening’ for several
weeks at tremendous economic and social cost. But by mid July the hospitalisa-
tion growth was linear once again.

In the autumn there was another seasonal Gompertz Function growth phase
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We expect to see the same cycle in the Northern Temperate Zone. 
We’ll show that Covid-19 provides some indirect evidence for this.
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The Extended Gompertz Function Model

In our paper we have illustrated this alternating cycle for Sweden, 
London, Isle-de-France, Ontario and Portugal in the Northern 
Temperate zone, for the Brazilian State of Rio de Janeiro in the 
Southern Tropical zone and the State of Amazonas for an equatorial 
example. 

It occurs equally in cases, hospitalisations, ICU admissions and 
deaths. 

Here are some samples of the alternating phases.
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The Extended Gompertz Function ModelTable 2: Covid-19 Growth Cycle.

Alternating Gompertz Function and Linear Growth for Covid-19
Area and Data type Gompertz Growth Linear Growth

Sweden Hosp 3 Mar 20-17 May 20 18 May 20-30 Sep 20
1 Oct 20-5 Nov 20 6 Nov 20-30 Nov 20
1 Dec 20-7 Feb 21 8 Feb 21-18 Mar 21

19 Mar 21-24 May 21

London Hosp 19 Mar 20-23 Apr 20 24 Apr 20-31 Aug 20
1 Sep 20-31 Oct 20 1 Nov 20-7 Dec 20
8 Dec 20-21 Mar 21

Isle de France Hosp 18 Mar 20-11 May 20 12 May 20-8 Aug 20
9 Aug 20-16 Oct 20 17 Oct 20-10 Nov 20
11 Nov 20-4 Jan 21 5 Jan 21-7 Mar 21
8 Mar 21-6 Jun 21

Ontario Hosp 1 Mar 20-14 Jun 20 15 Jun 20-1 Sep 20
2 Sep 20-31 Oct 20 1 Nov 20-27 Nov 20
28 Nov 20-14 Feb 21 15 Feb 21-13 Mar 21
14 Mar 21-14 Jun 21

Portugal ICU 14 Mar 20-15 May 20 16 May 20-7 Sep 20
8 Sep 20-11 Nov 20 12 Nov 20-7 Jan 21
8 Jan 21-31 Mar 21

RJ Hosp 15 Mar 20-30 Jun 20 1 Jul 20-25 Dec 20
26 Dec 20-29 Jan 21 30 Jan 21-17 Feb 21
18 Feb 21-21 Apr 21 22 Apr 21-4 May 21
5 May 21-14 Jun 21

Amazonas Deaths 1 Apr 20 -14 Jun 20 15 Jun 20-22 Dec 20
23 Dec 20-10 Mar 21

End of Table

A The Geometry Behind the Gompertz Func-
tion

This appendix provides a quick sketch of the geometry behind the Gumbel
distribution and the Gompertz Function. An introduction to this topic is
contained in [4] where we described a new solution to the problem of characterising
the domains of attraction of the Gumbel distribution and the other Extreme
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The Extended Gompertz Function Model

In every case we saw Gompertz Function growth resume in the normal 
Hope-Simpson seasonal period (including the autumn one we 
observed in the Portuguese Influenza cycle) as the second round of 
Covid-19 outbreaks took place. 

In addition, both Isle-de-France and Ontario had large ‘out of season’ 
outbreaks in the spring of 2021. 

In England, there was a small ‘out of season’ outbreak from 29 May to 
15 July 2021. 
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The Extended Gompertz Function Model

Covid-19 outbreaks follow a cycle of alternating Gompertz Function 
Growth and linear growth in cumulative events. 

Each of the Gompertz Function growth phases is predictable as 
illustrated above. 

Linear extrapolation gives accurate predictions in the linear phases. 

This reduces the forecasting problem to: 
  

1)Detecting the transition between phases, most importantly from 
   linear to Gompertz Function growth. 

2)Providing realistic bounds on growth in the early Gompertz  
  Function phase or reducing the time required for the Gompertz 
  Function fits to achieve predictive power.
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The Extended Gompertz Function Model in Real Time

Covid-19 hospitalisations in England grew linearly in November 2021. 
Using the data to 5 December, we detected a departure from linear 
growth.The data has a two day lag so we knew this on 7 December.

For the sample of daily admissions from 15 November to 5 December 
2021 we used a form of Extreme Value Theory* analysis to calculate 
bounds for growth of hospital admissions in the initial phase of the 
Omicron outbreak.

*Extreme Value analysis allows us to model the (unobserved) tail of the sample distribution of daily admissions. We use 
it to predict 3 Levels that depend only on the sample.  

Level 1 is the average daily admissions conditional on exceeding the sample maximum. 
Level 2 is the average daily admissions conditional on exceeding Level 1.  
Level 3 is the average daily admissions conditional on exceeding Level 3. 

It is an empirical observation that cumulative admissions are contained between linear growth at Level 1 admissions 
per day and linear growth at Level 3 admissions per day until the Gompertz Function achieves a high level of predictive 
power. 

Our bounds predicted that total admissions between 6 December and 31 
December 2021 would be bounded above by 30,613 admissions. The 
actual total for that period was 29,288.

mailto:cascon@OmegaAnalysis.com?subject=
mailto:shadwick@OmegaAnalysis.com?subject=


Since 29 December 2021, the prediction errors of the Gompertz Function 
fits to hospital admissions data have been under 10% for at least two 
weeks. 
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The ‘Inevitability’ of the Gompertz Function
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If the epidemic model for cases has the form

where N is the unknown number of people susceptible to infection, then
X(t) = NG(t) (1)

G(t) =
X

N

(2)

G(t, a, b) = e

�e�(at+b)
(3)
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is the fractional number of cases. It’s a non-decreasing function with values in 
[0,1] —therefore it’s a probability distribution.  

(Or maybe a parametrised family of probability distributions like the generalised 
Logistic distribution in the Richards Function.)
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Elie Cartan showed that transformation groups generate geometry and 
geometry generates invariants—like curvature. 

The Gumbel distribution is an Extreme Value distribution—one of the 
exceptional distributions determined by the action of the ‘location scale’ 
group on univariate probability distributions. It’s the zero curvature case. 

The other Extreme Value families correspond to constant negative curvature 
(Weibull distributions-the short tailed case) and constant positive curvature 
(Fréchet distributions-the fat tailed case). 

These special cases are ‘attractors’. The Gumbel distribution is the attractor 
for ‘thin-tailed’ distributions, whose domains are unbounded above but which 
have finite moments of all orders. (e.g. Normal, Laplace, Logistic) 

The ‘Inevitability’ of the Gompertz Function
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Our version of the EVT Theorem shows that a distribution is in the domain of 
attraction of an EVT attractor if and only if the limiting value of its curvature is 
the attractor’s constant. 

The ‘Inevitability’ of the Gompertz Function

We showed that the value of a distribution’s curvature at a given quantile is 
also an invariant and can be used to measure the rate of convergence of a 
distribution to its attractor.

The convergence for many thin tailed distributions is fast enough that after 
the 0.5 percentile the difference between the distribution and a Gompertz 
Function fit is indistinguishable at the granularity of our fits to epidemic 
data.
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The observational data tells us that the probability density function for the 
distribution must be asymmetric with a peak very close to the 0.368 
percentile—like the Gumbel distribution.

The Extreme Value Theorem tells us that, asymptotically, every thin-tailed 
distribution is approximated arbitrarily well by a Gumbel distribution and for 
practical purposes that begins at about the 0.5 percentile.

The ‘Inevitability’ of the Gompertz Function

This doesn’t leave much room for a distribution to deviate from the Gumbel 
distribution or for the model to deviate from the Gompertz Function.
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This is a method for navigating waves of Covid-19.  

It makes accurate (errors less than 10%) short to medium term (one 
week to several weeks) forecasts of Covid-19 hospitalisations. 

This is the fundamental requirement for dealing with an epidemic. 

Once we have accurate forecasts of demand, reliable contingency 
planning for healthcare is possible.

The Extended Gompertz Function Model
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Appendix 
Ontario Covid-19 Hospitalisations 

In November and December 2021, cumulative Covid-19 hospital 
admissions in Ontario were growing linearly. Simple linear extrapolation 
gave accurate predictions in this phase.
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Predictions made by extrapolating the linear fit from the previous 2 weeks forward for 2 weeks had a maximum 
error of 13% and an average absolute error less than 4%  between 15 October and 26 December 2021.
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*Extreme Value analysis allows us to model the (unobserved) tail of the sample distribution of daily admissions. We use 
it to predict 3 Levels that depend only on the sample.  

Level 1 is the average daily admissions conditional on exceeding the sample maximum. 
Level 2 is the average daily admissions conditional on exceeding Level 1.  
Level 3 is the average daily admissions conditional on exceeding Level 3. 

It is an empirical observation that cumulative admissions are contained between linear growth at Level 1 admissions 
per day and linear growth at Level 3 admissions per day until the Gompertz Function achieves a high level of predictive 
power. 

We detected a transition from the linear growth phase to the next Gompertz 
Function growth phase on 27 December 2021. 

From the sample of daily admissions from 7 to 27 December 2021 we used the 
EVT analysis described above for England to calculate bounds for growth of 
hospital admissions in the initial phase of the Omicron outbreak.

Appendix 
Ontario Covid-19 Hospitalisations 
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Cumulative hospital admissions from 28 December have remained below the 
upper bound. By 17 January the errors in the Gompertz Function fit predictions 
had already fallen below 12% and by 18 January below 6%.

As expected, cumulative admissions remained within the linear growth bounds until the 
Gompertz Function fits achieved a high level of predictive power.
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Appendix 
Ontario Covid-19 Hospitalisations 
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The model predicts that cumulative hospitalisations will reach about 8,400 
by mid March unless the next linear growth phase begins before that.

As expected, cumulative admissions remained within the linear growth bounds until the 
Gompertz Function fits achieved a high level of predictive power.

Appendix 
Ontario Covid-19 Hospitalisations 

39



Analysis

Omega

40cascon@OmegaAnalysis.com shadwick@OmegaAnalysis.com

Acknowledgement and a note on the fits.

The Gompertz function fits reported here have been done using Python’s 
non-linear fit routine in unoptimised code provided to us by Prof. B.A. 
Shadwick, University of Nebraska, Lincoln. 

You can get the same results using Maple’s Non-linear Fit package. 

Days have been numbered from 0 for the first date in the sample. Data has 
not been modified, even to remove errors such as negative deaths or 
oscillations due to reporting gaps. 
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